
CHAPTER 2

Introduction to Probability

1. Definitions

In weather forecasts one often hears a sentence such as “the prob-
ability of rain tomorrow is 50 percent.” What does this mean? Some-
thing like: “If we look at all possible tomorrows, in half of them there
will be rain”, or “if we make the experiment of observing tomorrow,
there is a quantifiable chance of having rain tomorrow, and somehow
or other this chance was quantified as being 1/2”. To make sense of
this, we formalize the notions of experimental outcome, event, and
probability.

Suppose that you make an experiment and imagine all possible
outcomes.

Definition. A sample space Ω is the space of all possible outcomes
of an experiment.

For example, if the experiment is “waiting until tomorrow, and then
observing the weather”, Ω is the set of all possible weathers of tomor-
row. There can be many weathers, some differing only in details we
cannot observe, and with many features we cannot describe precisely.

Suppose you set up a thermometer in downtown Berkeley and de-
cide you will measure the temperature tomorrow at noon. The set of
possible weathers for which the temperature is between 65 and 70 de-
grees is an “event”, an outcome which is specified precisely and about
which we can think mathematically. An event is subset of Ω, a set
of outcomes, a subset of all possible outcomes Ω, all of which share a
well-defined property which can be measured.

Definition. An event is a subset of Ω.

The set of events we are able to consider is denoted by B; it is a
set of subsets of Ω. We require that B (the collection of events) be a
σ-algebra, i.e., B satisfy the following axioms:

(1) ∅ ∈ B and Ω ∈ B (∅ is the empty set).
(2) If B ∈ B then CB ∈ B (CB is the complement of B in Ω).
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18 2. INTRODUCTION TO PROBABILITY

(3) If A = {A1, A2, . . . , An, . . .} is a finite or countable collection
in B, then any union of the elements of A is in B.

It follows from these axioms that any intersection of a countable num-
ber of elements of B also belongs to B.

Consider the tosses of a die. In this case, Ω = {1, 2, 3, 4, 5, 6}.
(1) If we are only interested in whether something happened or

not, we may consider a set of events

B = {{1, 2, 3, 4, 5, 6}, ∅}.
The event {1, 2, 3, 4, 5, 6} means “something happened” while
the event ∅ means “nothing happened”.

(2) If we are interested in whether the outcome is odd or even
then we may choose

B = {{1, 3, 5}, {2, 4, 6}, {1, 2, 3, 4, 5, 6}, ∅}.
(3) If we are interested in which particular number appears then

B is the set of all subsets of Ω. In this case we can say that B
is generated by {{1}, {2}, {3}, {4}, {5}, {6}}.

Observe that B in case (1) is the smallest σ-algebra on the sample
space (in the sense of having fewest elements) while B in case (3) is the
largest.

Definition. A probability measure P (A) is a function P : B → R
defined on the sets A ∈ B such that

(1) P (Ω) = 1.
(2) 0 ≤ P ≤ 1.
(3) If {A1, A2, . . . , An, . . .} is a finite or countable collection of

events such that Ai ∈ B and Ai ∩ Aj = ∅ for i &= j then
P (

⋃∞
i=1 Ai) =

∑∞
i=1 P (Ai) (the probability of the simultaneous

occurrence of incompatible events is the sum of the probabili-
ties of the individual events).

Definition. The triple (Ω,B, P ) is called a probability space.

In brief, the σ-algebra B defines the objects to which we assign
probabilities and P assigns probabilities to the elements of B.

Definition. A random variable η : Ω → R is a B-measurable
function defined on Ω where “B-measurable” means that the subset of
elements ω in Ω for which η(ω) ≤ x is an element of B. In other words,
it is possible to assign a probability to the occurrence of the inequality
η ≤ x for every x.
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Loosely speaking, a random variable is a real variable whose numer-
ical values are determined by experiment, with the proviso that it is
possible to assign probabilities to the occurrence of the various values.

Given a probability measure P (A), the probability distribution
function of a random variable η is given by

Fη(x) = P ({ω ∈ Ω | η(ω) ≤ x}) = P (η ≤ x).

The existence of such a function is guaranteed by the definition of a
random variable.

Now consider several examples.

Example. Let B = {A1, A2, A1 ∪ A2, ∅}. Let P (A1) = P (A2) =
1/2. Define a random variable

η(ω) =

{
−1, ω ∈ A1

+1, ω ∈ A2
.

Then

Fη(x) =


0, x < −1

1/2, −1 ≤ x < 1

1, x ≥ 1

.

Example. Suppose that Ω is the real line and the range of a ran-
dom variable η also is the real line, e.g., η(ω) = ω. In this case one
should be sure that the σ-algebra B is large enough to include all of the
sets of the form {ω ∈ Ω | η(ω) ≤ x}. The minimal σ-algebra satisfying
this condition is the σ-algebra of the Borel sets formed by taking all
the possible unions and complements of all of the half-open intervals
in R of the form (a, b].

Example. Suppose that we are tossing a die. Ω = {1, 2, 3, 4, 5, 6}
and η(ω) = ω. Take B to be the set of all subsets of Ω. The probability
distribution function of η is the shown in Figure 1.

Now for any a, b ∈ R, with a < b one can find c such that a < c ≤ b
and

P (c) = Fη(b)− Fη(a).

Suppose that F ′
η(x) exists. Then fη(x) = F ′

η(x) is the probabilty den-
sity of η. Since Fη(x) is non-decreasing fη(x) ≥ 0. Obviously,∫ ∞

−∞
fη(x)dx = Fη(∞)− Fη(−∞) = 1.

If F ′
η(x) exists and is continuous then

P (x < c ≤ x + dx) = Fη(x + dx)− Fη(x) = fη(x)dx.
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Figure 1. Probability distribution for a fair six sided die.

The following probability density functions (pdf’s) are often en-
countered:

(1) Equidistribution density

f(x) =

{
1, 0 ≤ x ≤ 1

0, otherwise
.

(2) Gaussian density

f(x) =
1√

2πσ2
exp

(
−(x−m)2

2σ2

)
, (2.1)

where m and σ are constants.
(3) Exponential density

f(x) =

{
e−x, x ≥ 0

0, x ≤ 0
.

2. Expected Values

Definition. Let (Ω,B, P ) be a probability space and η be a ran-
dom variable. Then the expected value, or mean, of the random vari-
able η is defined as the integral of η over Ω with respect to the measure
P :

E[η] =

∫
Ω

η(ω)dP.

In the case where Ω is a discrete set this integral is just the sum
of the products of the values of η with the probabilities that η assume
these values.
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This definition can be rewritten in another way involving the Stielt-
jes integral. Let F be a non-decreasing and bounded function. Define
the Stieltjes integral of a function g(x) on an interval [a, b] as follows.
Let a = x0 < x1 < . . . < xn−1 < xn = b, ∆i = xi+1 − xi, and
x∗i ∈ (xi, xi+1). Then∫ b

a

g(x)dF (x) = lim
∆i→0

n∑
i=1

g(x∗i )(F (xi+1 − F (xi))

(where we have written F instead of Fη for short). The expected value
of η is

E[η] =

∫ ∞

−∞
xdF (x).

If the derivative F ′ = f(x) exists then

E[η] =

∫ ∞

−∞
xf(x)dx.

If η is a random variable then so is aη where a is a constant. If η
is a random variable and g(x) is a continuous function defined on the
range of η, then g(η) is also a random variable, and

E[g(η)] =

∫ ∞

−∞
g(x)dF (x).

The special cases:

E[ηn] =

∫ ∞

−∞
xndF (x)

and

E[(η − E[η])n] =

∫ ∞

−∞
(x− E[η])ndF (x)

are called the nth moment and the nth centered moment of η respec-
tively. (Of course, these integrals may fail to converge for some random
variables.) The 2nd centered moment is the variance of η.

Definition. The variance Var(η) of the random variable η is

Var(η) = E[(η − E[η])2]

and the standard deviation of η is

σ =
√

Var(η).

Example. The Gaussian pdf (2.1) has E[η] = m and Var(η) = σ2.
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Definition. Two events A and B are independent if P (A ∩B) =
P (A)P (B). Two random variables η1 and η2 are independent if the
events {ω ∈ Ω | η1(ω) ≤ x} and {ω ∈ Ω | η2(ω) ≤ y} are independent
for all x and y.

Definition. If η1 and η2 are random variables then the joint dis-
tribution function of η1 and η2 is defined by

F (x, y) = P ({ω ∈ Ω | η1(ω) ≤ x, η2(ω) ≤ y}) = P (η1 ≤ x, η2 ≤ y).

If the second mixed derivative ∂2F (x, y)/∂x∂y exists then it is
called the joint density of η1 and η2 and denoted by fη1η2 . In this
case

Fη1η2(x, y) =

∫ x

−∞

∫ y

−∞
fη1η2(s, t) ds dt.

Clearly if η1 and η2 are independent then

Fη1η2(x, y) = Fη1(x)Fη2(y)

and
fη1η2(x, y) = fη1(x)fη2(y).

We can view two random variables η1 and η2 as a single vector val-
ued random variable η = (η1, η2) = η(ω) for ω ∈ Ω. Then η is measur-
able if the event η ∈ S with S ∈ R2 is measurable for a suitable family of
S’s, i.e., the event Z = {ω ∈ Ω : η(ω) ∈ S} ∈ B, where B is a σ-algebra
on Ω. Suppose that the joint probability function of the two random
variables exists and is denoted by Fη1η2(x, y) = P (η1 ≤ x, η2 ≤ y). Note
that Fη1η2(x, y) = Fη2η1(y, x) and Fη1η2(∞, y) = Fη2(y). If the density of
the joint probability distribution exists then

∫∞
−∞ fη1η2(x, y)dx = fη2(y).

Definition. The covariance of two random variables η1 and η2 is

Cov(η1, η2) = E[(η1 − E[η1])(η2 − E[η2])].

If Cov(η1, η2) = 0 then the random variables are uncorrelated. It is
in general not true that uncorrelated variables are independent.

Example. Let η1 and η2 be two random variables with joint prob-
ability distribution

(η1, η2) =


(1

2 ,
1
4), with probability 1

4

(1
2 ,−1

4), with probability 1
4

(−1
2 , 0), with probability 1

2

.

Then we have E[η1] = 0, E[η2] = 0, and E[η1η2] = 0. However, the
random variables are not independent.
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Finally, a vector-valued random variable is Gaussian (or equiva-
lently a sequence of random variables is jointly Gaussian) if

P (x1 ≤ η1 ≤ x1 + dx1, . . . , xn ≤ ηn ≤ xn + dxn) =
1

Z
e−

1
2 ((x−m)A−1(x−m))

where x = (x1, x2, . . . , xn), m = (m1, m2, . . . ,mn) and A is a positive
definite m×m matrix. The normalization constant Z can be shown to
be Z = (2π)n/2|A|1/2 where |A| is the determinant of A. For the case of
jointly Gaussian random variables the covariance matrix C with entries
Cij = E[(ηi − E[ηi])(ηj − E[ηj])] is the matrix A. If Cij = 0 then ηi

and ηj are uncorrelated. Furthermore, two Gaussian variables that are
uncorrelated are also independent.

3. Chebyshev’s Inequality and the Weak Law of Large
Numbers

We now discuss several useful properties of the mathematical ex-
pectation E.

Lemma 2.1. E[η1 + η2] = E[η1] + E[η2].

Proof. We assume for simplicity that the joint density fη1η2(x, y)
exists. Then the density fη1(x) of η1 is given by

fη1(x) =

∫ ∞

−∞
fη1η2(x, y)dy

and the density fη2(y) of η2 is given by

fη2(y) =

∫ ∞

−∞
fη1η2(x, y)dx,

therefore

E[η1 + η2] =

∫
(x + y)fη1η2(x, y)dxdy

=

∫
xfη1η2(x, y)dxdy +

∫
yfη1η2(x, y)dxdy

=

∫
xdx

∫
fη1η2(x, y)dy +

∫
ydy

∫
fη1η2(x, y)dx

=

∫
xfη1(x)dx +

∫
yfη2(y)dy = E[η1] + E[η2].

!
Lemma 2.2. If η1 and η2 are independent random variables then

Var[η1 + η2] = Var[η1] + Var[η2].
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Proof. For simplicity we assume that η1 and η2 have densities
with mean zero. Then

Var[η1 + η2] = E[(η1 + η2 − E[η1 + η2])
2] = E[(η1 + η2)

2]

=

∫
(x + y)2fη1η2(x, y)dxdy

=

∫
x2fη1η2(x, y)dxdy +

∫
y2fη1η2(x, y)dxdy

+2

∫
xyfη1η2(x, y)dxdy.

The first two integrals above are equal to Var(η1) and Var(η2) respec-
tively. The third integral is zero. Indeed, because η1 and η2 are inde-
pendent fη1η2(x, y) = fη1(x)fη2(y) and∫

xyfη1η2(x, y)dxdy =

∫
xfη1(x)dx

∫
yfη2(y)dy = E[η1]E[η2] = 0.

!
Another simple property of the variance is that Var(aη) = a2Var(η).

Indeed,

Var(aη) =

∫
(ax− E[aη])2fη(x)dx

=

∫
(ax− aE[η])2fη(x)dx

= a2

∫
(x− E[η])2fη(x)dx

= a2Var(η).

We now prove a very useful estimate due to Chebyshev.

Lemma 2.3. Let η be a random variable. Suppose g(x) is a nonneg-
ative, nondecreasing function, i.e., g(x) ≥ 0 and a < b ⇒ g(a) ≤ g(b).
Then for any a

P (η ≥ a) ≤ E[g(η)]

g(a)
.

Proof.

E[g(η)] =

∫ ∞

−∞
g(x)f(x)dx ≥

∫ ∞

a

g(x)f(x)dx

≥ g(a)

∫ ∞

a

f(x)dx = g(a)P (η ≥ a).

!
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Example. Suppose η is a nonnegative random variable. We define
g(x) to be 0 when x ≤ 0 and x2 when x ≥ 0. Let a be any positive
number. Then

P (η ≥ a) ≤ g(η)

a2
=

E[η2]

a2
.

Consider now a special case. Let η be a random variable and define
ξ = |η − E[η]|. Then we obtain the following inequality

P (|η − E[η]| ≥ a) ≤ Var(η)

a2

for any a > 0. Now take a = σk where k is an integer. Then

P (|η − E[η]| ≥ σk) ≤ Var(η)

(σk)2
=

1

k2
.

In other words, it is very unlikely that η differs from its expected value
by more than a few standard deviations.

Suppose η1, η2, . . . , ηn are independent, identically distributed ran-
dom variables. Let

η =
1

n

n∑
i=1

ηi.

Then

E[η] = E[η1], Var(η) =
1

n
Var(η1), σ(η) =

σ(η1)√
n

.

Therefore

P
(|η − E[η]| ≥ kn−1/2σ(η1)

) ≤ 1

k2
.

This tells us that if we use the average of n independent samples of
a given distribution to estimate the mean of the distribution then the
error in our measurement decreases as 1/

√
n. This brings the notion of

expected value closer to the intuitive, every day notion of “average.”

4. Monte Carlo Methods

With Monte Carlo methods one evaulates a non-random quantity
as an expected value of a random variable.

A pseudo-random sequence is a computer generated sequence with
independent elements which cannot be distinguished by simple tests
from a random sequence, yet is the same each time one runs the appro-
priate program. For the equidistribution density, number theory allows
us to construct the appropriate pseudo-random sequence. Suppose that
we want to generate a sequence of independent pseudo-random num-
bers with probability distribution function F (x). This can be done in
the following way. Let F (η) = ξ where η is the random variable we
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want to sample and ξ is equidistributed in [0, 1]. Take η such that
η = F−1(ξ) holds (if there are multiple solutions pick one arbitrarily).
Then η will have the desired distribution. To see this consider the
following example. Let η be a random variable with

η =


α1 with probability p1

α2 with probability p2

α3 with probability p3

,

where
∑3

i=1 pi = 1 and pi ≥ 0 for i = 1, 2, 3. Then F (η) = ξ implies

η =


α1 if ξ∈[0, p1],

α2 if ξ∈(p1, p2],

α1 if ξ∈(p2, 1].

This can be generalized to any countable number of discrete values in
the range of η, and since any function can be approximated by a step
function, the results hold for any probability distribution function F .

Example. Let η be a random variable with the exponential pdf.
Then F (η) = ξ gives∫ η

0

e−sds = ξ =⇒ η = − log(1− ξ).

Example. If f exists then by differentiating
∫ η

−∞ f(s)ds = ξ we
get f(η)dη = dξ. The following algorithm (Box-Muller) allows us to
sample pairs of independent variables with Gaussian densities with zero
mean and variance σ2. If

η1 =
√
−2σ2log ξ1 cos(2πξ2)

η2 =
√
−2σ2log ξ1 sin(2πξ2)

where ξ1 and ξ2 are equidistributed in [0, 1], as one can see from∣∣∣∣∣ ∂η1

∂ξ1
∂η1

∂ξ2
∂η2

∂ξ1
∂η2

∂ξ2

∣∣∣∣∣
−1

dη1dη2 = dξ1dξ2

thus
ξ1

2π
dη1dη2 =

1

2π
exp

(
−η2

1 + η2
2

2σ2

)
dη1dη2 = dξ1dξ2.

Now we present the Monte Carlo method. Consider the problem
of evaluating the integral I =

∫ b

a g(x)f(x)dx, where f(x) ≥ 0 and



4. MONTE CARLO METHODS 27∫ b

a f(x)dx = 1. We have

I =

∫ b

a

g(x)f(x)dx = E[g(η)]

where η is a random variable with pdf f(x). Suppose that we can sam-
ple η, i.e., make n independent experiments and find values η1, . . . , ηn.
Then, as can be seen from the Chebyshev inequality, we can approxi-
mate E[g(η)] by

E[g(η)] =
1

n

n∑
i=1

g(ηi).

The error in this approximation will be of the order of σ(g(η))/
√

n,
where σ(g(η)) is the standard deviation of the variable g(η). The in-
tegral I is the estimand, g(η) is the estimator, and n−1

∑n
i=1 g(ηi) is

the estimate. The estimator is unbiased if its expected value is the
estimand.

Example. Let

I =
1√
2π

∫ ∞

−∞
g(x)e−x2/2dx.

If η is a Gaussian random variable with mean 0 and variance 1 then

I = E[g(η)] ∼ 1

n

n∑
i=1

g(ηi).

There are two ways to reduce the error of a Monte Carlo method as
can be seen from the error estimate. One way is to take a larger number
of samples. The other way is to reduce the variance of the function g(η).
One way to reduce the variance is “importance sampling.”

We start with an extreme case. Suppose we want to evaluate the
integral I =

∫ b

a g(x)f(x)dx as above. Suppose that the function g is
nonnegative, then the quantity q(x) given by q(x) = f(x)g(x)/I has
the following properties:

q(x) ≥ 0,

∫ b

a

q(x)dx = 1.

Further, suppose we can generate a pseudo-random sequence with pdf
q(x). Then we have∫ b

a

g(x)f(x)dx = I

∫ b

a

g(x)f(x)

I
dx = I

∫ b

a

q(x)dx = IE[1],

where 1 is the function that takes the value 1 for all samples. Then the
Monte Carlo method has zero error. The problem lies in the definition
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of q(x) where we need to know the value of I which is exactly what
we want to compute. This shows us that if we know the value of the
quantity we want to compute then Monte Carlo can give us the exact
result.

However, it is possible to reduce the error of the Monte Carlo
method along similar lines without knowing the result we want to com-
pute. Suppose that we can find a function h(x) with the following
properties:

(1) The integral I1 =
∫ b

a f(x)h(x)dx is easily evaluated,
(2) h(x) ≥ 0,
(3) We can sample a variable with pdf f(x)h(x)/I1 easily,
(4) g(x)/h(x) varies little.

Then we have

I =

∫ b

a

g(x)f(x)dx =

∫ b

a

g(x)

h(x)
f(x)h(x)dx = I1

∫ b

a

g(x)

h(x)

f(x)h(x)

I1
dx

= I1E
[g

h
(η)

]
∼ I1

n

n∑
i=1

g(ηi)

h(ηi)
(2.2)

where η has pdf f(x)g(x)/I1. Since g(η)/h(η) varies little, its variance
and the error will be smaller. For a more quantitative estimate see
later. Note that the new random variable puts more points where g is
large, hence the name of the method “importance sampling”; one puts
more samples where g is large, or “important.”

Example. Suppose that we want to compute via Monte Carlo the
integral I =

∫ 1

0 cos(x/5)e−5xdx. We can do that by application of
the basic Monte Carlo formula without any attempt at importance
sampling. That would mean to sample (independently) a variable ξ n
times and then approximate I by

I ≈ 1

n

n∑
i=1

cos(ξi/5)e−5ξi .

However, due to the large variance of the function cos(x/5)e−5x, the
corresponding error would be large (the large variance of the function is
due to the presence of the factor e−5x). Alternatively, we can perform
the Monte Carlo integration using importance sampling. There are
different ways of doing that and one of them is as follows. Let I1 =∫ 1

0 e−5xdx. Then we have

I =

∫ 1

0

cos(x/5)e−5xdx = I1

∫ 1

0

cos(x/5)
e−5x

I1
dx.
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Let η be a random variable with pdf

f(x) =


e−5x

I1
, 0 ≤ x ≤ 1

0, elsewhere
,

then I can be written as I = I1E[cos(η/5)]. As can be readily seen the
function cos(x/5) has smaller variance in the range of integration [0, 1]
than the previous integrand. In order to perform the Monte Carlo
integration we need to sample the variable η. As shown above this
can be done by solving the equation

∫ η

0 e−5x/I1dx = ξ, where ξ is
equidistributed in [0, 1]. An easy calculation gives η = −1

5 log(1−5I1ξ).
We can use this formula to sample η n times and thus the Monte Carlo
approximation to I will read

I ≈ I1

n

n∑
i=1

cos(ηi/5).

5. Parametric Estimation

Suppose η is a random variable which someone has sampled and
given you the sample (x1, x2, . . . , xn). Now try to guess the pdf of
the xi which gave you the sample. Suppose you know the type of
distribution you have, but not the parameters of the distribution. For
example, suppose you know that the distribution is Gaussian, but you
don’t know the mean and the variance.

Definition. Any function of a sample is called a “statistic.”

Suppose you want to estimate a parameter θ of the pdf by a statistic
θ̂(x1, x2, . . . , xn).

Definition. The estimate is unbiased if

E[θ̂(x1, x2, . . . , xn)] = θ.

For example, the sample mean defined by

x̄ =
1

n

n∑
i=1

xi

is unbiased, while the sample variance

1

n

n∑
i=1

(xi − x̄)2
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is not unbiased. But one can check that

1

n− 1

n∑
i=1

(xi − x̄)2

is an unbiased estimate of the variance.
Suppose you think that the pdf of η which gave you the independent

sample x = (x1, x2, . . . , xn) is f(θ). Then the following question arises:
what is a good estimate of θ given x? Suppose you know θ. Then the
probability of getting the given sample is

L =
n∏

i=1

f(xi | θ).

L is called a likelihood function. It is plausible that a good estimate
of θ is the one that maximizes L. This is the “maximum likelihood
estimate.” In general it is easier to maximize log L.

Example. Suppose you think that x1, x2, . . . , xn are independent
samples of a Gaussian distribution with mean m and variance σ2. Then

L =
n∏

i=1

e−(xi−m)2/2σ2

√
2πσ2

.

Find the maximum of log L:

log L =
n∑

i=1

(
−(xi −m)2

2σ2
− 1

2
log 2π − log σ

)
,

∂log L

∂m
=

n∑
i=1

xi −m

σ2
= 0.

Hence
n∑

i=1

xi − nm = 0,

and we get the sample mean as the maximum likelihood estimate of m:

m =
1

n

n∑
i=1

xi.

Similarly,

∂log L

∂σ
= −n

σ
+

n∑
i=1

(xi −m)2

σ3
= 0,
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hence the maximum likelihood estimate of the variance of a Gaussian
variable is the sample variance:

σ2 =
1

n

n∑
i=1

(xi −m)2.

6. The Central Limit Theorem

Suppose that η1, η2, . . . , ηn are independent, identically distributed
random variables. We can assume without loss of generality that they
have mean zero and variance one. Suppose the ηi’s have a pdf f . Define
a new random variable

Sn =
1√
n

n∑
i=1

ηi.

What can we say about the pdf of Sn? The answer for this question is
given by

Theorem 2.4. (The Central Limit Theorem) Let η1, η2, . . . , ηn

be independent, identically distributed random variables with finite vari-
ance and zero mean. Let us also assume for simplicity that Var(ηi) = 1.
Then

Sn =
1√
n

n∑
i=1

ηi

converges weakly to a Gaussian variable with mean zero and variance
one.

Proof. We will assume that the ηi have pdf f and that fs is the
pdf of Sn. We want to show that

lim
n→∞

∫ b

a

fs(x)dx =

∫ b

a

e−x2/2

√
2π

dx

for any a, b. Note that n−1
∑

ηi = n−1/2(n−1/2
∑

ηi) where n−1/2
∑

ηi

tends to a Gaussian; thus the central limit theorem contains informa-
tion as to how n−1

∑
ηi → 0 (i.e., for large n, n−1

∑
ηi ≈ Gaussian/

√
n).

Suppose η1 and η2 are random variables with respective pdf’s f1 and
f2. What is the density of η1 + η2? We know that

P (η1 + η2 ≤ x) = Fη1+η2(x) =

∫ ∫
x1+x2≤x

f1(x1)f2(x2)dx1dx2.

With the change of variables x2 = t and x1 + x2 = x (note that the
Jacobian is 1), we obtain:

Fη1+η2(x) =

∫
dx

∫
f1(t)f2(x− t)dt.
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Thus the density of η1+η2 = fη1+η2 is just
∫

f1(x2)f2(x−x2)dx2 = f1∗f2

and hence f̂η1+η2 = f̂1f̂2.
Hence if we assume that the random variables ηi have the same

density function for all i, then
∑n

i=1 ηi has density f (n) = f ∗ f ∗ . . . ∗ f
n times, where ∗ is the convolution. Furthermore,

P (a < Sn ≤ b) = P

(
a <

1√
n

∑
ηi ≤ b

)
= P (

√
na ≤

∑
ηi ≤

√
nb)

=

∫ √
nb

√
na

f (n)(x)dx =

∫ b

a

√
nf (n)(y

√
n)dy. (2.3)

The last step involves the change of variables y = x/
√

n.

What we want to show is that
∫ b

a

√
nf (n)(y

√
n)dy converges to∫ b

a

e−x2/2

√
2π

dx.

Pick some nice function φ and consider

I =

∫ ∞

−∞
fs(x)φ(x)dx =

∫ ∞

−∞

√
nf (n)(x

√
n)φ(x)dx.

Let φ̌(k) be the inverse Fourier transform of φ, i.e.,

φ(x) =
1√
2π

∫ ∞

−∞
φ̌(k)e−ikxdk.

Then

I =

∫ ∞

−∞

√
nf (n)(x

√
n)φ(x)dx

=
1√
2π

∫ ∞

−∞

√
nf (n)(x

√
n)dx

∫ ∞

−∞
φ̌(k)e−ikxdk

=
1√
2π

∫ ∞

−∞

(∫ ∞

−∞

√
nf (n)(x

√
n)e−ikxdx

)
φ̌(k)dk

=
1√
2π

∫ ∞

−∞

[
f̂

(
k√
n

)]n

φ̌(k)dk.

Here

f̂

(
k√
n

)
=

1√
2π

∫ ∞

−∞
f(x)eikx/

√
ndk.

Expand eikx/
√

n in a Taylor series:

eikx/
√

n = 1 +
ixk√

n
− x2k2

2n
+ O

(
1

n3/2

)
.



7. CONDITIONAL PROBABILITY AND CONDITIONAL EXPECTATION. 33

Then

f(x)eikx/
√

n = f(x) +
ixk√

n
f(x)− x2k2

2n
f(x) + O

(
1

n3/2

)
.

Recall that∫
f(x)dx = 1,

∫
xf(x)dx = 0,

∫
x2f(x)dx = 1.

Hence

f̂

(
k√
n

)
=

1√
2π

∫ ∞

−∞

(
1− k2x2

2n
+ . . .

)
f(x)dx = 1− k2

2n
+ small.

Since
lim

n→∞

(
1− a

n

)n

= e−a

and since the integral of the small terms of the expansion is negligible
we get

lim
n→∞

[
f̂

(
k√
n

)]n

= lim
n→∞

(
1− k2

2n
+ small

)n

= e−k2/2.

Returning to the integral I we obtain

I → 1√
2π

∫ ∞

−∞
e−k2/2 φ̌(k)dk

=
1√
2π

∫ ∞

−∞
e−k2/2

(
1√
2π

∫ ∞

−∞
φ(x)e−ikxdx

)
dk

=
1√
2π

∫ ∞

−∞
φ(x)dx

(
1√
2π

∫ ∞

−∞
e−k2/2e−ikxdk

)
=

1√
2π

∫ ∞

−∞
φ(x)e−x2/2dx.

Now, taking φ to be a smooth function that approximates

φ(x) =

{
1, a ≤ x ≤ b

0, otherwise
,

we get the desired result. !

7. Conditional Probability and Conditional Expectation.

Suppose we make an experiment and observe that event A has hap-
pened, with P (A) &= 0. How does this knowledge affect the probability
that event B happens also? We define the probability of B given A to
be

P (B|A) =
P (A ∩B)

P (A)
.
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If A and B are independent then P (A ∩B) = P (A)P (B) and so

P (B|A) =
P (A ∩B)

P (A)
=

P (A)P (B)

P (A)
= P (B).

If A is fixed and B is any member of B (i.e., any event) than P (B|A)
defines a perfectly good probability on B; this is the probability condi-
tional on A

(Ω,B, P ) → (Ω,B, P (B|A)).

Suppose η is a random variable on Ω. Then the average of η given A is

E[η|A] =

∫
η(ω)P (dω|A).

Example. Suppose we throw a die. Let η be the value on top.
Then

E[η] =
1

6

6∑
i=1

i = 3.5.

Suppose we know that the outcome is odd. Then the probability that
the outcome is one is given by

P (1) =
P ({1} ∩ {1, 3, 5})

P ({1, 3, 5}) =
1/6

1/2
=

1

3
.

In this case the conditional expectation of η given A is

E[η|outcome is odd] =
1

3
(1 + 3 + 5) = 3.

The probabilities of an even outcome is

P (2) = P (4) = P (6) = 0

while the total probability of an odd outcome is

P (1) + P (3) + P (5) = 1.

Suppose Z = {Zi} is an at most countable disjoint measurable
partition of Ω. This means that the number of Zi’s is finite or countable,
each Zi is an element of B, Ω =

⋃
i Zi, and Zi ∩ Zj = ∅ if i &= j.

Example. Z = {A, CA}, where A is a measurable subset of Ω and
CA is the complement of A.

Definition. Suppose A is an event. Then XA(ω) is a random
variable equal to 1 when ω ∈ A and 0 when ω /∈ A.

Observe that E[XA(ω)] = P (A).
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Definition. Let Z = {Zi} be a partition of Ω as above. Let η be
a random variable and construct the random variable E[η|Z] as follows

E[η|Z] =
∑

i

XZiE[η|Zi].

This is a function of ω whose definition depends on the choice of
partition Z. In words, we average η over each element Zi of the par-
tition and then we assign this average to be the value of the variable
E[η|Z] for all ω in Zi. If one could think of the elements of ω as people
and the values of η as those people’s heights, one could then partition
the people by ethnic origin and assign an average height to each ethnic
group. Given a person, the new variable would consider that person’s
height to be the average height of his ethnic group.

Note that Z generates a σ-algebra. It is a coarser σ-algebra than
B, i.e., it is contained in B. The conditional expectation is the best
estimate of the original random variable when the instruments you use
to measure the outcomes (which define the σ-algebra B) are too coarse.

Example. Return to the example of the die. Let η be the number
on top. Let A be the event that outcome is odd. Let Z = {A, CA}.
Then

E[η|A] =
1

3
(1 + 3 + 5) = 3,

E[η|CA] =
1

3
(2 + 4 + 6) = 4,

and finally

E[η|Z] = 3XA + 4XCA.

We now want to define the notion of conditional expectation of one
random variable η given another random variable ξ. For simplicity we
assume at first that ξ takes only finitely many values ξ1, ξ2, . . . , ξn. Let
Zi be the inverse image of ξi (the set of ω such that η(ω) = ξi). Then
Z = {Z1, Z2, . . . , Zn} is a finite disjoint partition of Ω. Thus we can
construct E[η|Z] as defined above.

Definition. We define E[η|ξ] to be equal to the random variable
E[η|Z].

We observe that E[η|ξ] is a random variable and at the same time a
function of ξ. Indeed, when ξ has value ξi then E[η|ξ] = E[η|Zi], thus
E[η|ξ] is a function of ξ. We now show that E[η|ξ] is actually the best
least square approximation of η by a function of ξ. This property can
serve as an alternative definition of conditional expectation.
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Theorem 2.5. Let h(ξ) be any function of ξ. Then

E[(η − E[η|ξ])2] ≤ E[(η − h(ξ))2].

Proof. We remind the reader that∫ 1

0

(f(x)− c)2dx

is minimized when c is the average of f(x) on [0, 1], that is, when
c =

∫ 1

0 f(x)dx. Similarly, we want to minimize

E[(η − g(ξ))2] =

∫
Ω

(η − g(ξ(ω))2P (dω)

=
∑

i

P (Zi)

∫
Zi

(η − g(ξ(ω))2P (dω)

P (Zi)
.

Each of the integrals
∫

Zi
(η − g(ξ(ω))2P (dω)/P (Zi) is minimized when

g(ξ(ω)) = E[η|Zi], that is when g(ξ(ω)) is the average of η on Zi. Thus
E[η|ξ] is the best least squares approximation of η by a function of
ξ. !

Consider the space of all random variables. It is a vector space.
The random variables which are functions of ξ form a linear subspace.
Let η1, and η2 be random variables. Define their scalar product by

(η1, η2) = E[η1η2].

The space of functions of ξ is closed in the norm

||η|| =
√

(η, η).

Theorem 2.5 implies that E[η|ξ] is the orthogonal projection of η on
the space of functions of ξ. This in turn implies that for any function
g(ξ) we have

E[(η − E[η|ξ])g(ξ)] = 0.

The meaning of the formula above is that η−E[η|ξ] is perpendicular to
all functions of ξ in the space of functions which are square integrable
with respect to the probability P , i.e., have finite variance. If we define
P to be the orthogonal projection which projects the whole space of
random variables with finite variance onto the subspace of random
variables with finite variance which are functions of ξ, then E[η|ξ] = Pη.

We now consider the special case where η and ξ are random vari-
ables whose joint density fηξ is known

P (s < η ≤ s + ds, t < ξ ≤ t + dt)) = fηξ(s, t)dsdt.

We want to calculate E[g(η, ξ)|ξ] where g(η, ξ) is some function of η
and ξ. E[g(η, ξ)|ξ] is a random variable and a function of ξ. What is
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this function? Specifically, what is the value of this random variable
when ξ = a?

To answer this question, we first define a discrete approximation ξ̂
to ξ which takes the value ξ̂ = (i + 1/2)h when ξ ∈ [ih, (i + 1)h]. This

happens with probability
∫ (i+1)h

ih fξ(t)dt where fξ(t) is given by

fξ(t) =

∫ ∞

−∞
fηξ(s, t)ds.

Now we replace E[g(η, ξ)|ξ] by E[g(η, ξ)|ξ̂]. (We are commiting many
mathematical sins here, but sin should be enjoyed.) Suppose we fix an
a and pick a value ai = (i + 1/2)h of ξ̂ such that a ∈ [ih, (i + 1)h].
Then

E[g(η, ξ)|ξ]ξ=a ≈ E
[
g(η, ξ)|ξ̂

]
ξ̂=ai

≈
∫∞
−∞ ds

∫ (i+1)h

ih g(s, t)f(s, t)dt∫∞
−∞ hf(s, (i + 1/2))ds

→
∫∞
−∞ g(s, a)f(s, a)ds∫∞

−∞ f(s, a)ds

as h → 0. Thus

E[g(η, ξ)|ξ]ξ=a =

∫∞
−∞ g(s, a)f(s, a)ds∫∞

−∞ f(s, a)ds
.

This is just what one would expect: the value of E[g(η, ξ)|ξ] when
ξ = a is the mean of g(η, ξ) when we keep ξ equal to a but allow η to
take any value it wants.

8. Conditional Probabilities and Bayes’ Theorem

Recall the definition of conditional probability:

Definition. Let A and B be two events with P (A) &= 0 and
P (B) &= 0. The conditional probability of B given A, P (B|A), is

P (B|A) =
P (A ∩B)

P (A)
. (2.4)

Similarly, the conditional probability of A given B is

P (A|B) =
P (A ∩B)

P (B)
. (2.5)

Combining (2.4) and (2.5) we get Bayes’ theorem:

Theorem 2.6. Let A and B be two events with P (A) &= 0 and
P (B) &= 0. Then

P (A|B) =
P (B|A)P (A)

P (B)
. (2.6)
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Suppose Z = {Zj}, j = 1, 2, . . . is a finite or countable partition of
the sample space Ω as above; then for the probability P (A) of an event
A we have

P (A) =
∑

j

P (A ∩ Zj) =
∑

j

P (A ∩ Zj)

P (A)
P (A) =

∑
j

P (Zj|A)P (A).

Suppose that P (Zj) &= 0 for all j. Then we can also rewrite P (A) as

P (A) =
∑

j

P (A ∩ Zj) =
∑

j

P (A ∩ Zj)

P (Zj)
P (Zj) =

∑
j

P (A|Zj)P (Zj).

(2.7)
Using Bayes’ theorem (2.6) for the events A and Zj and expressing
P (A) by (2.7) we get

P (Zj|A) =
P (A|Zj)P (Zj)∑
j P (A|Zj)P (Zj)

. (2.8)

This is the second form of Bayes’ theorem. We can use the second
form to address the following question: Suppose we have an experi-
mental sample and we know that we have sampled some probability
distribution which depends on a parameter θ. We do not know what
value θ takes in the case at hand, but we have an idea à priori (i.e.,
a “prior” idea) that the set of possible values of θ can be viewed as
a random variable with a density gold (the “prior” distribution). Now
that we have made an experiment and obtained data, we should be able
to learn from these data how to improve the prior ideas and obtain a
new density gnew, the “posterior” density, which improves the “prior”
density in light of the data. We show how to do it in an example.

Example. Let η1 and η2 be two independent, identically distributed
random variables with

η1 = η2 =

{
1, with probability p

0, with probability 1− p
.

For the sum η1 + η2 we can deduce:

η1 + η2 =


2, with probability p2

1, with probability 2p(1− p)

0, with probability (1− p)2

.

Suppose that before the experiment we thought that the parameter p
had the value p = 1/4 with probability 1/4 and the value p = 1/2
with probability 3/4. This is the “prior distribution.” Now we make
an experiment and find η1 + η2 = 1. We want to use the second form
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of Bayes’ theorem (2.8) to see how the experiment affects our beliefs
about the distribution of the parameter p. To do that let A be the
event that η1 + η2 = 1, let Z1 be the event that p = 1/4, and Z2 the
event that p = 1/2 (note that Z1 ∪ Z2 = Ω). Then we have

P (Z1|A) =
P (A|Z1)P (Z1)∑
j P (A|Zj)P (Zj)

=

(
2× 1

4 × 3
4

)× 1
4(

2× 1
4 × 3

4

)× 1
4 +

(
2× 1

2 × 1
2

)× 3
4

=
1

5
,

as opposed to 1/4 à priori. In words, the probability that p = 1/4 now
that we know the outcome of the experiment equals the ratio of the
product of the probability that the outcome is what it is when p = 1/4
and the prior probability that p = 1/4, normalized by the sum of the
probabilities of the outcome we have for the various prior probabilities.

Of course the taint of possible error in the prior ideas has not com-
pletely disappeared.
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